SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Get the angles of the hexagon
The internal angles of an hexagon is given as:
![\begin{gathered} (180(n-2))/(n) \\ n=6\text{ since hexagon has 6 sides} \\ So\text{ we have:} \\ (180(6-2))/(6)=(180(4))/(6)=(720)/(6)=120\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/njv1fdceaeo2vv05ffpzsuiz132qushfon.png)
Therefore each angle of the hexagon is 120 degrees.
STEP 2: find the length of the sides
We remove the right triangles as seen below:
Using the special right triangles, we have:
STEP 3: find the area of the extracted triangle above
![\begin{gathered} b=1,h=√(3) \\ Area=(1)/(2)\cdot1\cdot√(3)=(√(3))/(2)units^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3je3y5kj24qf3nozra5tciv4hy5mreb4p8.png)
Since there are two right triangles, we multiply the area by 2 to have:
![Area=2\cdot(√(3))/(2)=√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/s3tvmz1w04q6gm6etbrjqoyxqmetdihrio.png)
There are two triangles(both sides), therefore the total area of the shaded area will be:
![√(3)\cdot2=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/u8qu88q8gia47li53kbraphdq7pbqfboc3.png)
STEP 4: Find the area of the whole hexagon
![\begin{gathered} Area=(3√(3)s^2)/(2) \\ s=hypotenuse\text{ of the right triangle}=2 \\ Area=(3√(3)\cdot4)/(2)=6√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pb8wt57dxxmnnitf5eefheutel85w0om5v.png)
STEP 5: Find the probability
![\begin{gathered} Probability=\frac{possible\text{ area}}{Total\text{ area}} \\ \\ Possible\text{ area}=2√(3) \\ Total\text{ area}=6√(3) \\ \\ Probability=(2√(3))/(6√(3))=(1)/(3)=0.3333 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mwm4n889rzl6x07x4d00kvl409s5mg4640.png)
Hence, the probability that the dart hits one of the shaded areas is approximately 0.3333