To solve this problem, we will compute the slope of the line and then we will use it to find the equation of the line.
To determine the slope of a line that passes through points (x₁,y₁), and (x₂,y₂), we can use the following formula:
![m=(y_2-y_1)/(x_2-x_1).](https://img.qammunity.org/2023/formulas/mathematics/college/bj9w0jbtaz7gx1c2m3fqhrqujb5ngsrafc.png)
Substituting
![\begin{gathered} (x_2,y_2)=(-1,4), \\ (x_1,y_1)=(1,5), \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xvi0li5xh810ss0zft1czun8cf6vnspkw6.png)
in the above formula, we get:
![s=(4-5)/(-1-1)=(-1)/(-2)=(1)/(2).](https://img.qammunity.org/2023/formulas/mathematics/college/l6y2yno85flpoqpe9qn0gtal0drl1cnorf.png)
Now, with the above slope, we use the following formula for the equation of a line with slope m:
![y-y_1=m(x-x_1).](https://img.qammunity.org/2023/formulas/mathematics/college/10pptnjw94rqmabvy6qtkwu8xxsvuipb6z.png)
Finally, we substitute one of the points:
![y-5=(1)/(2)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/college/hciailhn3llawpygch9mrqac7n7tgyhpgh.png)
and take the equation to its slope-intercept form:
![\begin{gathered} y-5=(1)/(2)(x-1), \\ y-5=(1)/(2)x-(1)/(2), \\ y=(1)/(2)x+(9)/(2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ug5scar4zcy5dvbwxotp0pxa0sghwu2sf5.png)
Answer:
![y=(1)/(2)x+(9)/(2)=0.5x+4.5.](https://img.qammunity.org/2023/formulas/mathematics/college/bb5bo99gwxryvtphogi8fotqkx4moldr1d.png)