Solution:
Part - A:
To factor a polynomial, take out the factors of each term outside of the brackets. The terms of this expression are divisible by x⁴ (GCF), which can factorize completely. This will subtract 4 from the exponents.
Part - B:
To factor a polynomial, take out the factors of each term outside of the brackets. The terms of this expression are divisible by 3 (GCF), which can factorize completely. This will divide 3 from the terms.
- 3x² - 75
- 3(x² - 25)
- 3(x + 5)(x - 5)
Part - C:
To factor a polynomial, take out the factors of each term outside of the brackets. The terms of this expression are divisible by x²y (GCF), which can factorize completely.
- 3x⁵y + 4x⁴y - 5x²y
- => x²y(3x³ + 4x² - 5)
Part - D:
Unfortunately, this expression can't factor with rational numbers. The expression results in 81x³ - 125.