Given the table below
To find the equation of the values of the table, we will first calculate the rate of change, then use a point and the rate of change calculated fo find the equation for the repairman's charges for the repair
To find the rate of change we have
![\text{ Point 1}\Rightarrow(1,62)\Rightarrow t_1=1,c_1=62](https://img.qammunity.org/2023/formulas/mathematics/college/vohettko9n46sq394ojs4iz58isu3xqele.png)
![\text{ Point 2}\Rightarrow(3,116)\Rightarrow t_2=3,c_2=116](https://img.qammunity.org/2023/formulas/mathematics/college/kjif445px4nw0mwc7j0l8i0n02g1bssw8u.png)
The rate of change formula is
![m=(c_2-c_1)/(t_2-t_1)=(116-62)/(3-1)=(54)/(2)=27](https://img.qammunity.org/2023/formulas/mathematics/college/6yf2475pnk6ta8c1recqj03cspa725znkm.png)
Having calculated the rate, we can use slope and one point form equation of a line to get the desired equation. This is given below:
![c-c_1=m(t-t_1)](https://img.qammunity.org/2023/formulas/mathematics/college/oc85lzxgb9d7osa4yrh3wrwgftji3axy9i.png)
Substitute the given values of t and c and the rate in the formula above
![\begin{gathered} c-62=27(t-1) \\ c-62=27t-27 \\ c=27t-27+62 \\ c=27t+35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tjfeg39hyrdc31t6tvlnicd4939vypvohh.png)
Hence, the repairman's charges for a repair is given as C = 27t + 35