Given:
The equation is given as,
![y=3x+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/jwf34zsd1z9qucsd17xg134rl84mjuwz3o.png)
The interval is given as,
![\lbrack a,b\rbrack=\lbrack45,48\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/5a3pquwyaywo0de77ziw23ek3vrkcj0qtf.png)
The objective is to find the average rate of change.
Step-by-step explanation:
The general formula to find the average rate of change is,
![A=(f(b)-f(a))/(b-a)\text{ . . . . (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/j1y0ed73sti53j34lisqc51phj7qytewhf.png)
On plugging the function in the equation (1),
![A=((3(48)+1)-(3(45)+1))/(48-45)](https://img.qammunity.org/2023/formulas/mathematics/college/zsf482md0a5q9g87t6em2l98j4vta8z6h2.png)
On further solving the above equation,
![\begin{gathered} A=(145-136)/(3) \\ =(9)/(3) \\ =3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lxu0io52jt7m9jsbvojlq2wuibocdsjujr.png)
Hence, the average rate of change is 3.