Given:
The point (0,0) lies on the graph f(x) and (4,-3) lies on the graph h(x).
To find:
We need to find the equation for the function h(x).
Step-by-step explanation:
Consider the translation point which is translated horizontally a unit and vertically as b units.
![(x^(\prime),y^(\prime))\rightarrow(x+a,y+b)](https://img.qammunity.org/2023/formulas/mathematics/college/iwbbasvyaz0boqb3hor4vbpc1323dal9e9.png)
The point (4,-3) can be written as follows.
![(4,-3)\rightarrow(0+4,0-3)](https://img.qammunity.org/2023/formulas/mathematics/college/yns7wj3dky9ckwghej3rz0rnq819fivnhu.png)
We get the function h(x) after f(x) translated horizontally 4 units right and vertically 3 units down.
The function can be written as follows.
![h(x)=f(x-4)-3](https://img.qammunity.org/2023/formulas/mathematics/college/da26pk1gugxwniq4icunm6iv33r67uw7eb.png)
![\text{Replace x=x-4 in f(x)=}\sqrt[]{x\text{ }}\text{ and substitute in the equation.}](https://img.qammunity.org/2023/formulas/mathematics/college/7z168vo5ljw19ehu31rk59b5ei5an9k6m9.png)
![h(x)=\sqrt[]{x-4}-3](https://img.qammunity.org/2023/formulas/mathematics/college/w1kzoihnk0uejoorc9aaezui5ektxam5eh.png)
Final answer:
![h(x)=\sqrt[]{x-4}-3](https://img.qammunity.org/2023/formulas/mathematics/college/w1kzoihnk0uejoorc9aaezui5ektxam5eh.png)