To find the positive intervals, we'll have:
![-3x^2-18x-15>0](https://img.qammunity.org/2023/formulas/mathematics/college/u5rixohfola3arq0l0uk86cy012wrtomsi.png)
1. Divide both sides by -3:
(Remember that dividing or multiplying by a negative number turns the inequality around!)
![\begin{gathered} -3x^2-18x-15>0 \\ \rightarrow x^2+6x+5<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/meuiwklzdx6lo63e08pha6exh0w605espj.png)
2. Factor the expression:
![\begin{gathered} x^2+6x+3<0 \\ \rightarrow(x+5)(x+1)<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ahbh9a3588sh5oyhu3wzgmd80c24mqmg4.png)
3. Identify the interval we're looking for:
Therefore, the function is positive in the interval:
[tex]\begin{gathered} -5