1. Given the expression:
![\mleft(x+2\mright)\mleft(x-4\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/59id109v2r7ubc59wc5uuyyyj4yiy4hujh.png)
You can use the FOIL method to multiply the binomials. Remember that the FOIL method is:
![(a+b)\mleft(c+d\mright)=ac+ad+bc+bd](https://img.qammunity.org/2023/formulas/mathematics/college/43ydsizejidy9u4kqjl18b2ckwa9b7nper.png)
Then, you get:
![\begin{gathered} =(x)(x)-(x)(4)+(2)(x)-(2)(4) \\ =x^2-4x+2x^{}-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1xahep3uw55qa16dac9pr1ztldsmy65f7g.png)
Adding the like terms, you get:
![=x^2-2x-8](https://img.qammunity.org/2023/formulas/mathematics/college/ujnchn5yuaj5yeb2wfgskwdvgrpx9nv6lz.png)
2. Given:
![x^2-6x+5](https://img.qammunity.org/2023/formulas/mathematics/college/cc0wcpxts8ybnsz76ia16b85wzvq2oghd2.png)
You have to complete the square:
- Identify the coefficient of the x-term". In this case, this is -6.
- Divide -6 by 2 and square the result:
![((-6)/(2))^2=(-3)^2=9](https://img.qammunity.org/2023/formulas/mathematics/college/frun8inc2jtt664hu6g0d6b48r8cb9x4on.png)
- Now add 9 to the polynomial and also subtract 9 from the polynomial:
![=x^2-6x+(9)+5-(9)](https://img.qammunity.org/2023/formulas/mathematics/college/w6znkh07r1xyvagjvdpbiuneb2xsdhe4vp.png)
- Finally, simplifying and completing the square, you get:
![=(x-3)^2-4](https://img.qammunity.org/2023/formulas/mathematics/college/wcodt3zqsp9s1oze0ztpp4y8w0gkiy2t1q.png)
3. Given the expression:
![\mleft(x+3\mright)^2-7](https://img.qammunity.org/2023/formulas/mathematics/college/xm2rj12xa066c6ji0vzz5vs64zp7r5rv3n.png)
You can simplify it as follows:
- Apply:
![(a+b)^2=a^2+2ab+b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wp4nbc9fbx6r68qmr14kcon9sub55nk8b.png)
In this case:
![\begin{gathered} a=x \\ b=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a2k82ndsbl09sendprth91wsf4tglu4e5o.png)
Then:
![\begin{gathered} =\lbrack(x)^2+(2)(x)(3)+(3)^2\rbrack-7 \\ =\lbrack x^2+6x+9\rbrack-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wm9pt87amwud2nsxh9ykd64dys8z4lilx8.png)
- Adding the like terms, you get:
![=x^2+6x+2](https://img.qammunity.org/2023/formulas/mathematics/college/1xfmttla21oonh3zqbtww4eo8uir3odqv8.png)
4. Given:
![x^2-8x+15](https://img.qammunity.org/2023/formulas/mathematics/college/wnwdnj9ox4ydjjtl1398iy41iowewierq6.png)
You need to complete the square by following the procedure used in expression 2.
In this case, the coefficient of the x-term is:
![b=-8](https://img.qammunity.org/2023/formulas/mathematics/college/qtbt9z8g9qvgkf2g9f4fb3myt6xamc8ml3.png)
Then:
![((-8)/(2))^2=(-4)^2=16](https://img.qammunity.org/2023/formulas/mathematics/college/ls7tg9tpmege0ma5brilr7ihg2j432sieq.png)
By Completing the square, you get:
![\begin{gathered} =x^2-8x+(16)+15-(16) \\ =(x-4)^2-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j94q7wmjw673yapqxa1s4n0ksyk7nwyi9j.png)
Therefore, the answer is: