Answer:
![v_0=20.7(m)/(s)](https://img.qammunity.org/2023/formulas/mathematics/college/mzdg6le78xvhqxvkm8kuidbbryrbvp9b1n.png)
Step-by-step explanation:
We are given the equation for the height:
![h(t)=10+v_0t-4.9t^2](https://img.qammunity.org/2023/formulas/mathematics/college/e3ts9r9xgh737ojihnedtnwbr8jomhkdiu.png)
If we differentiate this equation, we get the equation of the velocity:
![h^(\prime)(t)=v(t)=v_0-9.8t](https://img.qammunity.org/2023/formulas/mathematics/college/iy46b3hgr18ef8yrcj9zkdzgv610g8u2ed.png)
The problem tells us that the object hits the ground at a velocity of -25m/s. We can write this:
![-25=v_0-9.8t_0](https://img.qammunity.org/2023/formulas/mathematics/college/7pbr244v9k8xb8lodd4yde0gywq1f4etbq.png)
Where t0 is the time when the object hits the ground, and the velocity is -25m/s
Now, we can solve for v0:
![v_0=9.8t_0-25](https://img.qammunity.org/2023/formulas/mathematics/college/gsitwqoco8r052ht86axcy51gc5i3ltch2.png)
And if we use this in the height h(t) equation, we can find the value of t0. At t0, the height is 0. Thus:
![0=10+(9.8t_0-25)t_0-4.9t_0^2](https://img.qammunity.org/2023/formulas/mathematics/college/mm4qwbl800ngh74cbowz8lnkjzohlojth7.png)
And solve:
![\begin{gathered} 0=10+9.8t_o^2-4.9t_0^2-25t_0 \\ 0=10-25t_0+4.9t_0^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vyhgoympj9v8e4hvwz359t7d0v9makfqkl.png)
Next, we can use the quadratic formula to solve this:
![\begin{gathered} t_(\pm)=(-(-25)\pm√((-25)^2-4\cdot4.9\cdot10))/(2\cdot4.9)=(25\pm√(625-196))/(9.8)=(25\pm√(429))/(9.8)=(25\pm20.71231)/(9.8) \\ . \\ t_+=(25+20.71231)/(9.8)=4.664521seconds \\ . \\ t_-=(25-20.71231)/(9.8)=0.43751seconds \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z4m8j0v7nj0b2ckbkd5yekhjr1s47arr52.png)
Let's see which of the two solutions is the time we are looking for.
Let's go back to our solution for v0:
![v_0=9.8t_0-25](https://img.qammunity.org/2023/formulas/mathematics/college/gsitwqoco8r052ht86axcy51gc5i3ltch2.png)
If we use t0 = 0.43751 s:
![v_0=9.8\cdot0.46751-25=-20.7123m/s](https://img.qammunity.org/2023/formulas/mathematics/college/rxunn8939uspe96cv47sv3nul8rianoxi2.png)
This means that the initial velocity is negative, thus the object goes downwards. But, the problem tells us that initially the object is thrown upwards.
The correct value of t0 = 4.66 seconds
Now we can find v0:
![v_0=9.8\cdot4.664521-25=20.712](https://img.qammunity.org/2023/formulas/mathematics/college/6dtato5trnwew8x2jliuewcorg3tv1o8cs.png)
Thus, v0 = 20.7 m/s