Assuming these are volume percentages and the volumes don't change when you mix them, we can calculate this using a system of equations.
But first we need to identify each equation and variable.
let x be the volume of 7% vinegar used and y be the volume of 12% vinegar used.
The total volume is the sum of those and it must be equal to 370 mL, so:
![x+y=370](https://img.qammunity.org/2023/formulas/mathematics/college/qx416sznb2eahxv40phultx221oxeqfvwe.png)
The amount of vinegar in the x volume of 7% vinegar can be calculated by multiplying x by the 7%, that is, by 0.07:
![0.07x](https://img.qammunity.org/2023/formulas/mathematics/college/3koruk43tet28icuhehv8u21a6pf922yia.png)
Similarly, the amount of vinegar in y is:
![0.12y](https://img.qammunity.org/2023/formulas/mathematics/college/uctkfo1p5jmjv1169qfsp7v7618z0hza1v.png)
So, the total amount of vinegar after the mixture is:
![0.07x+0.12y](https://img.qammunity.org/2023/formulas/mathematics/college/7i5llhpd75mur461ne65ixv047utrri6hg.png)
Since the percentage of the final mixture is 8%, the amount after the mixture can also be calculated by taking 8% of the final volume of 370mL, that is:
![0.08\cdot370=29.6](https://img.qammunity.org/2023/formulas/mathematics/college/wbm1ehmlnkixb1opp0iz5apm7vlhmfcu9n.png)
The two ways of calculating the amount of vinegar in the mixture must be the same, so we have got our second equation:
![0.07x+0.12y=29.6](https://img.qammunity.org/2023/formulas/mathematics/college/7neld489j1pfmza69zj5o4s7tsigrc2hgu.png)
So, the system of equations is:
![\begin{gathered} x+y=370 \\ 0.07x+0.12=29.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8konmgo97iuwhm3n4rcbe48naey3zzi4x2.png)
We can solve this by substitution:
![\begin{gathered} x+y=370 \\ x=370-y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3eo82hvyekoet07trtj5kuvgcejh2tqm1.png)
Thus:
![\begin{gathered} 0.07x+0.12y=29.6 \\ 0.07(370-y)+0.12y=29.6 \\ 0.07\cdot370-0.07y+0.12y=29.6 \\ 25.9+0.05y=29.6 \\ 0.05y=29.6-25.9 \\ 0.05y=3.7 \\ y=(3.7)/(0.05) \\ y=74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8yziamutcimct9zq10dn2y2x8okbmakyu5.png)
And, going back to the first equation:
![\begin{gathered} x=370-y \\ x=370-74 \\ x=296 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c04bmqcj68ztje3nckm7ouz6xoj0l97n7i.png)