![((5)/(13),y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lguds8zn72sd7d26cd8hs7l6ajpmw2bagd.png)
This is given point in the fourth quadrant.
In this point, the adjacent is
![(5)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/xchqx081k5zcjcie573u8fvvpy1ec5gb9a.png)
The opposite is y.
Find hypotenuse h using the pythagorean theorem:
![\begin{gathered} h^2=((5)/(13))^2+y^2 \\ h=\sqrt[]{(25)/(169)+y^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8o3pj61sxzd3ql6pgr533lunfitwkj2ofw.png)
![\sec (\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ebfwmly9ylqmkud39m4g42v5ikk7zghr4h.png)
is equal to hypotenuse by adjacent.
![\cot (\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cjn9dggorvsaruvw61jdhtke308j28ho62.png)
is equal to adjacent by opposite.
In the fourth quadrant,
![\sec \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/js4io5gin9va7hkra9pfc5x62bh22471pw.png)
is positive , and
![\cot \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/gm3zioetpdfn8wep53vn5b75yzdnamajyb.png)
is negative.
So,
![\begin{gathered} \sec \theta=(h)/((5)/(13)) \\ =\frac{13\sqrt[]{(25)/(169)+y^2}}{5} \\ \cot \theta=((5)/(13))/(-y) \\ =-(5)/(13y) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/okknp53x2ee4sbo7t2ibpbdf8xumg9dgaa.png)