152k views
4 votes
In the inequality 6a+4b>10, what could be the possible value of a if b=2?

1 Answer

1 vote

We are given the following inequality:


6a+4b>10

If we replace b = 2, we get:


\begin{gathered} 6a+4(2)>10 \\ 6a+8>10 \end{gathered}

Now we solve for "a" first by subtracting 8 on both sides:


\begin{gathered} 6a+8-8>10-8 \\ 6a>2 \end{gathered}

Now we divide both sides by 6


(6a)/(6)>(2)/(6)

Simplifying:


a>(1)/(3)

Therefore, for b = 2, the possible values of "a" are those that are greater than 1/3

User Jows
by
3.0k points