232k views
2 votes
Given a triangle ABC at points A = ( - 2, 2 ) B = ( 2, 5 ) C = ( 2, 0 ), and a first transformation of right 4 and up 3, and a second transformation of left 2 and down 5, what would be the location of the final point B'' ?

Given a triangle ABC at points A = ( - 2, 2 ) B = ( 2, 5 ) C = ( 2, 0 ), and a first-example-1
User Loukaswho
by
7.7k points

2 Answers

4 votes

Answer: The answer would be (4,3)

Step-by-step explanation: because if you started with (2,5), which would be (x,y) x goes left and right, and y goes up and down, and the questions says that you have to go 4 to the right and 3 up, then add 4 to 2, which is 6, and 3 to 5, which is 8, so now you have the point (6,8), then the second translation would be 2 to the left, and down 5, this is negative so you subtract this time, so subtract 2 from 6, which is 4, and 5 from 8, which is 3, so your final answer is (4,3).

User JJMpls
by
7.6k points
7 votes

Answer

a. (4, 3)

Explanation

The translation of a point (x, y) a units to the right and b units up transforms the point into (x + a, y + b).

Considering point B(2, 5), translating it 4 units to the right and 3 units up, we get:

B(2, 5) → (2+4, 5+3) → B'(6, 8)

The translation of a point (x, y) c units to the left and d units down transforms the point into (x - c, y - d).

Considering point B'(6, 8), translating it 2 units to the left and 5 units down, we get:

B'(6, 8) → (6 - 2, 8 - 5) → B''(4, 3)

User Rian
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories