The given triangle has vertices at:
![\begin{gathered} P(-2,5) \\ Q(4,1) \\ R(-2,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vaurkv7a3u7l1awk2x6qtbogcly1c0429g.png)
In the coordinate plane, the triangle looks like this:
There are different forms to find the circumcenter, we are going to use the midpoint formula:
![M(x,y)=((x1+x2)/(2),(y1+y2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/wck2btle43v0w18mfkf7g6o2nf8gczyuci.png)
Apply this formula for each vertice and find the midpoint:
![M_(P,Q)=((-2+4)/(2),(5+1)/(2))=(1,3)](https://img.qammunity.org/2023/formulas/mathematics/college/gppnfm5ssw70efp3tmymbobfbvtkjqtl36.png)
For QR:
![M_(Q,R)=((4+(-2))/(2),(1+(-3))/(2))=(1,-1)](https://img.qammunity.org/2023/formulas/mathematics/college/86lgaz5veq3daopzmszye5n2hgtdtqhda9.png)
For PR:
![M_(P,R)=((-2+(-2))/(2),(5+(-3))/(2))=(-2,1)](https://img.qammunity.org/2023/formulas/mathematics/college/y0z7v3ax2d0pxeb3apmxrnbh2vjut5sddy.png)
Now, we need to find the slope for any of the line segments, for example, PQ:
We can apply the slope formula:
![m=(y2-y1)/(x2-x1)=(1-5)/(4-(-2))=(-4)/(6)=-(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/r9oikehbhahpjgqaznvnbhwexrer8lgrjb.png)
By using the midpoint and the slope of the perpendicular line, find out the equation of the perpendicular bisector line, The slope of the perpendicular line is given by the formula:
![\begin{gathered} m1\cdot m2=-1 \\ m2=-(1)/(m1) \\ m2=-(1)/(-(2)/(3))=(3)/(2)_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ti2s24kcie7mnfods6hdezt3pgglthdx8j.png)
The slope-intercept form of the equation is y=mx+b. Replace the slope of the perpendicular bisector and the coordinates of the midpoint to find b:
![\begin{gathered} 3=(3)/(2)\cdot1+b \\ 3-(3)/(2)=b \\ b=(3\cdot2-1\cdot3)/(2)=(6-3)/(2) \\ b=(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fungvn0opoce0i3iu71pm80z2kxaoxf0kb.png)
Thus, the equation of the perpendicular bisector of PQ is:
![y=(3)/(2)x+(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/p7ku5i5ezvits0gyiipgvvxb5u6gnl85zy.png)
If we graph this bisector over the triangle we obtain:
Now, let's find the slope of the line segment QR:
![m=(-3-1)/(-2-4)=(-4)/(-6)=(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/jcogw6lyfdr5dx5d3xcdm7n0n2ql78nhie.png)
The slope of the perpendicular bisector is:
![m2=-(1)/(m1)=-(1)/((2)/(3))=-(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/lv2s50dld1nbg5jipe56o5fh6lcm8bw6rt.png)
Let's find the slope-intercept equation of this bisector:
![\begin{gathered} -1=-(3)/(2)\cdot1+b \\ -1+(3)/(2)=b \\ b=(-1\cdot2+1\cdot3)/(2)=(-2+3)/(2) \\ b=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2vetu7o5efjmn16kzr8evw23igm4wg3y2f.png)
Thus, the equation is:
![y=-(3)/(2)x+(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/65r9drqoootzw9047lru7ojw9ai4osi534.png)
This bisector in the graph looks like this:
Now, to find the circumcenter we have to equal both equations, and solve for x:
![\begin{gathered} (3)/(2)x+(3)/(2)=-(3)/(2)x+(1)/(2) \\ \text{Add 3/2x to both sides} \\ (3)/(2)x+(3)/(2)+(3)/(2)x=-(3)/(2)x+(1)/(2)+(3)/(2)x \\ (6)/(2)x+(3)/(2)=(1)/(2) \\ \text{Subtract 3/2 from both sides} \\ (6)/(2)x+(3)/(2)-(3)/(2)=(1)/(2)-(3)/(2) \\ (6)/(2)x=-(2)/(2) \\ 3x=-1 \\ x=-(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/66tiqjp14uffgucn33xdc9rdgntgi6j7gm.png)
Now replace x in one of the equations and solve for y:
![\begin{gathered} y=-(3)/(2)\cdot(-(1)/(3))+(1)/(2) \\ y=(1)/(2)+(1)/(2) \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x4lksddubwpahv2pd9ssas0hwqod180peg.png)
The coordinates of the circumcenter are: (-1/3,1).
In the graph it is: