The system of equation are:
![\begin{gathered} 3x+2y=17 \\ 4x+6y=26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4b5ml115fiq5ryrtnzgthtnyz5uhqgarvc.png)
to solve this problem we can solve the second equation for x so:
![\begin{gathered} 4x=26-6y \\ x=6.5-1.5y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fgwqvbvwo90vjjwk07mvse3y9jxh30bvay.png)
Now we can replace x in the firt equation so:
![3(6.5-1.5y)+2y=17](https://img.qammunity.org/2023/formulas/mathematics/college/207vad56j640wnstl4gdkna8qefosp1g4u.png)
and we can solve for y so:
![\begin{gathered} 19.5-4.5y+2y=17 \\ 19.5-17=2.5y \\ 2.5=2.5y \\ (2.5)/(2.5)=1=y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iblp0v9pdc5d2xdhsj05r2fkoactvdhn5z.png)
Now we replace the value of y in the secon equation so:
![\begin{gathered} x=6.5-1.5(1) \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xcv2sviko35pdwqf4wv00udsme885u44ki.png)
So the solution as a ordered pair is:
![(x,y)\to(5,1)](https://img.qammunity.org/2023/formulas/mathematics/college/7wnhzzaa4ef0ye6bek0ib6xuci7g0mw336.png)