To solve the problem, we will make use of the identity:
![\cos (\alpha-\beta)=\cos (\alpha)\cos (\beta)+\sin (\alpha)\sin (\beta)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/jyjlmnozdlxj2dn5u23kksr0re8l9runtz.png)
ANGLE α
The angle lies in the second quadrant. The only positive ratio is the sine.
If we have that:
![\tan \alpha=-(12)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/wglk5sun3uovldyk3mvmpnjxknfzabzr5d.png)
Displaying this on a triangle for ease of working, we have:
Therefore, the length of the hypotenuse will be:
![\begin{gathered} x=\sqrt[]{12^2+5^2}=\sqrt[]{144+25}=\sqrt[]{169} \\ x=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/thz39opt96qo6uw80mspqy27xdwi806ef8.png)
Therefore, we have that:
![\begin{gathered} \sin \alpha=(12)/(13) \\ \cos \alpha=-(5)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v9omh1gdkxvm0ch7snjzuf2i2qskzzf8av.png)
ANGLE β
This angle lies in the fourth quadrant. Only the cosine ratio is positive in this quadrant.
We are given in the question:
![\cos \beta=(3)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/yymvivwptqzcchazwxpke4i69oowrrfroo.png)
Displaying this on a triangle for ease of working, we have:
Therefore, using the Pythagorean Triplets, we have that:
![y=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/wx52g7p0v1iblbd3gyv6qd8su55c639ir8.png)
Therefore, we have that:
![\sin \beta=-(4)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/bp5061yjqlexe7ikv6161mi47l7sts4pq6.png)
SOLVING THE IDENTITY
Applying the identity quoted earlier, we have:
![\begin{gathered} \cos (\alpha-\beta)=\cos (\alpha)\cos (\beta)+\sin (\alpha)\sin (\beta)_{} \\ \cos (\alpha-\beta)=(-(5)/(13))((3)/(5))+((12)/(13))(-(4)/(5)) \\ \cos (\alpha-\beta)=-(63)/(65) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bdwv0fjjd5w1w9mh89dm8y18g4uqftc5nn.png)