Step-by-step explanation
To begin with, we will first have to obtain the length of side VX
![VX^2=WX^2+VW^2-2* WX* VWcosw](https://img.qammunity.org/2023/formulas/mathematics/college/x8c0djrwnl0dn0grtjfa1xh4jyg5rzw3vl.png)
In our case
![\begin{gathered} WX=28t \\ VW=95t \\ w=94^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6bujbtrbxyrizcmbziekeovli4oewt9brh.png)
Thus
![\begin{gathered} VX^2=(28t)^2+(95t)^2-2*(28t*95t)cos94 \\ \\ VX^2=784+9025+371.104 \\ VX^2=100180.10 \\ \\ VX=100.90t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1uv5sejfl05awyxparixy1jsqo4lw6uuy4.png)
Next, we will determine the angles at V and X
using sine rule
![\begin{gathered} (sin94)/(100.9t)=(sinV)/(28t) \\ \\ sinV=(28t* sin94)/(100.9t) \\ \\ sinV=0.27683 \\ \\ V=16.07^0 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dlj0xks813sdnab4otlis1x0ftpmxkcd0x.png)
Then, we will get the measure at X
![180^0-16.07^0-94=69.93^0](https://img.qammunity.org/2023/formulas/mathematics/college/9kdr83zgc9drurf01mw8ik20e1gynbkoo9.png)
Therefore, the order from smallest to largest angles will be
m
OR
m