Answer:
a) r = 0.79%
b)
![P_t=5.17(1.0079)^t](https://img.qammunity.org/2023/formulas/mathematics/college/plq2mu2o1ckj2a6n70529ptltowb6erghw.png)
c) 6.6 million people
d) 2046
Step-by-step explanation:
We'll use the below formula for exponential growth;
![P_t=a(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/5q1cc87mgq4f841os74cprekuve58mecu6.png)
where a = initial amount
r = growth rate
t = number of time intervals
a) From the question, we have that
a = 5.17 million
P(t)= 6.05 million
t = 20 years
Let's go ahead and substitute these values into our formula, and solve for r as shown below;
![\begin{gathered} 6.05=5.17(1+r)^(20) \\ (6.05)/(5.17)=(1+r)^(20) \\ (1+r)=\sqrt[20]{(6.05)/(5.17)} \\ r=\sqrt[20]{(6.05)/(5.17)}-1 \\ r=0.00789 \\ r=0.79\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1243f99fqaq3ana1e42ek1fpsa4e5udoks.png)
b) The exponential model can be written as shown below;
![\begin{gathered} P_t=5.17(1+0.0079)^t \\ P_t=5.17(1.0079)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ge7l7gqa9hk2xl0m24a8dx3usygqcjcm0t.png)
c) When t = 31 years, let's go ahead and find P as shown below;
![\begin{gathered} P_t=5.17(1.0079)^(31) \\ P_t=6.6\text{ million people} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f53s8bfad61pjso157w10bvjbr0lxm3fr3.png)
d) When P = 7.5 million, let's go ahead and solve for t as shown below;
![\begin{gathered} 7.5=5.17(1.0079)^t \\ 1.45=(1.0079)^t \\ \log 1.45=\log (1.0079)^t \\ \log 1.45=t*\log (1.0079) \\ t=(\log 1.45)/(\log (1.0079) \\ t=47.2\text{years} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2tl29genrxxhms7xnnpv4bl2llp46wcls3.png)
So to get the particular year all we need to do is add 47 years to the initial year. That will us 1999 + 47 = 2046