The quotient is x² + 4x + 3
Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6
Step-by-step explanation:![(x^3+2x^2\text{ - 5x - 6) }/\text{ (x - 2)}](https://img.qammunity.org/2023/formulas/mathematics/college/hgaepo9sv4t8ptwr7h237c45jxdq6r9xyx.png)
![\begin{gathered} x\text{ - 2 = 0} \\ x\text{ = 2} \\ \\ \text{coefficient of }x^3+2x^2\text{ - 5x - 6:} \\ 1\text{ 2 -5 -6} \\ \\ We\text{ will divide the coefficients by 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bf8vnsgmcb2lptr1vbn47reubd48fojm5s.png)
Using synthetic division:
![\begin{gathered} (x^3+2x^2\text{ - 5x - 6) }/\text{ (x - 2) = }\frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}} \\ \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}\text{ = quotient + }\frac{remai\text{ nder}}{\text{divisor}} \\ \\ The\text{ coefficient of the quotient = 1 4 3} \\ \text{The last number is zero, so the remainder = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r3uq02z1a09fkm3vr4e1mq7p3dldyy0a35.png)
![\begin{gathered} \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}=1x^2\text{ + 4x + 3 + }\frac{0}{x\text{ - 2}} \\ \text{quotient }=\text{ }x^2\text{ + 4x + 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a31nosy8pu5vq4uol0gt8fyu7w44vdibul.png)
For a (x - 2) to be a factor of x³ + 2x² - 5x - 6, it will not have a remainder when it is divided.
Since remainder = 0
Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6