We have to find the equation of the quadratic function.
We know the vertex, located in (4,6), and one point (-5,-2).
The x-coordinate of the vertex (4) is equal to -b/2a, being a the quadratic coefficient and b the linear coefficient.
Now, we have 2 points to define the 3 parameters, so one of the parameters is undefined.
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
We start with the vertex, that we know that is:
![\begin{gathered} x=-(b)/(2a)=4 \\ -b=4\cdot2a=8a \\ b=-8a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbteawg4giz4f86a2bdokqcp44xijuc41x.png)
Then, we can write the equation as:
![y=ax^2-8ax+c=a(x^2-8x)+c](https://img.qammunity.org/2023/formulas/mathematics/college/fhfxqy1ovyemihqgd6hdkh4v7avpifct5w.png)
If we replace the point (-5,-2) in the equation, we get:
![\begin{gathered} -2=a((-5)^2-8\cdot(-5))+c \\ -2=a(25+40)+c \\ -2=65a+c \\ c=-2-65a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eykilnc9kj6xl6cmiwcwpu06n275h5nxgb.png)
We replace the vertex coordinates and get:
![\begin{gathered} 6=a(4^2-8\cdot4)+c \\ 6=a(16-32)+(-2-65a) \\ 6=-16a-2-65a \\ 6=-81a-2 \\ 81a=-2-6 \\ a=-(8)/(81)\approx-0.01 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l19nb3i0i65ir1zjcofxmlepk19fqmkj37.png)
Then, the linear coefficient b is:
![b=-8a=-8\cdot(-(8)/(81))=(64)/(81)\approx0.79](https://img.qammunity.org/2023/formulas/mathematics/college/gr8u6r0oz25y5iy3bv7fw99vip4pm8y0d1.png)
And the constant term is:
![c=-2-65a=-2-65\cdot(-(8)/(81))=-2+(520)/(81)=(-162+520)/(81)=(358)/(81)\approx4.42](https://img.qammunity.org/2023/formulas/mathematics/college/vaqn74uoswwb8t3e8qcsticbct03y1o0nb.png)
The quadratic coefficient is a=-0.01
The linear coefficient is b=0.79
the constant term is c=4.42