Step-by-step explanation
We are told that the perimeter of a rectangular poster is 14 feet and the length is 4 feet.
Perimeter simply means the total sum of all the sides of the rectangle
![\begin{gathered} From\text{ the above} \\ let\text{ the length = y} \\ width\text{ =x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ol0mgdtjkls635f0wc2oukxpgonmvhl4de.png)
So, the perimeter is
![x+x+y+y=2x+2y](https://img.qammunity.org/2023/formulas/mathematics/college/k42mfm9yvcektcjv4xay7ikfkbafhrb9kc.png)
Since the perimeter is 14 then
![2x+2y=14](https://img.qammunity.org/2023/formulas/mathematics/college/u2g9269p4cm6ss5orv03nq1rve2cv41ebi.png)
Also, the length is 4 feet
Therefore y = 4, so that
![\begin{gathered} 2x+2(4)=14 \\ 2x+8=14 \\ collecting\text{ like terms} \\ 2x=14-8 \\ 2x=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hrnsvtyxg21bwwzd5g69r7ltwpwu3nzock.png)
Making x the subject of the formula
![\begin{gathered} x=(6)/(2)=3 \\ \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svs2n3mr6ijv12vtkuija7g6w8epvqz2av.png)
Therefore, the width of the rectangle is 3 feet
The rectangle is
![4+3+4+3=14](https://img.qammunity.org/2023/formulas/mathematics/college/yiok2noaq189vaiyzlm3uixv4f0kok2ka4.png)