Given: A and B are two sets such that-
![\begin{gathered} A\cap B=\phi \\ Pr(A)=0.3 \\ Pr(B)=0.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qjiyuicscdx7dvacje4mnzejnnc886wwfa.png)
Required: To determine-
![\begin{gathered} Pr(A\cap B) \\ Pr(A\cup B) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v8qoccftepyg8bqw92tqdw6yg0xiaahyxq.png)
Explanation: Since A and B have no common elements, the events are independent events or disjoints or mutually exclusive.
For independent events, we have-
![Pr(A\cap B)=Pr(A).Pr(B)](https://img.qammunity.org/2023/formulas/mathematics/college/gn9xe3vo5ey20qfxrnj4mb6pydu0teyd47.png)
Substituting the values into the formula-
![\begin{gathered} Pr(A\cap B)=0.3*0.4 \\ =0.12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t2uk00vypysnqqqcv80ts55llgew7pl9ps.png)
Recall that-
![Pr(A\cup B)=Pr(A)+Pr(B)-Pr(A\cap B)](https://img.qammunity.org/2023/formulas/mathematics/college/zl3zg1we4x4qtkzrrgcdpnsia5t6nw3pld.png)
Substituting the values into the formula and further solving as-
![\begin{gathered} Pr(A\cup B)=0.3+0.4-0.12 \\ =0.7-0.12 \\ =0.58 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3lk55r16gxx99uf75l9nv4m52sudvwy1p3.png)
Final Answer: a)
![Pr(A\cap B)=0.12](https://img.qammunity.org/2023/formulas/mathematics/college/4h7hhbp3qcn46qx8kcjtmcwllzr13forfw.png)
b)
![Pr(A\cup B)=0.58](https://img.qammunity.org/2023/formulas/mathematics/college/2yhtmpv51mes2vx5mflmi75045dk065u2m.png)