97.1k views
0 votes
- Polynomial Functions -For each function, state the vertex; whether the vertex is a maximum or minimum point; the equation of the axis of symmetry and whether the function's graph is steeper than, flatter than, or the same shape as the graph of f(x)=x²

- Polynomial Functions -For each function, state the vertex; whether the vertex is-example-1

1 Answer

7 votes

EXPLANATION

Given the function f(x) = (x-6)^2 + 1


\mathrm{The\: vertex\: of\: an\: up-down\: facing\: parabola\: of\: the\: form}\: y=ax^2+bx+c\: \mathrm{is}\: x_v=-(b)/(2a)

Expanding (x-6)^2 + 1 by applying the Perfect Square Formula:


=x^2-12x+37
\mathrm{The\: parabola\: params\: are\colon}
a=1,\: b=-12,\: c=37
x_v=-(b)/(2a)
x_v=-(\left(-12\right))/(2\cdot\:1)
\mathrm{Simplify}
x_v=6
y_v=6^2-12\cdot\: 6+37

Simplify:


y_v=1


\mathrm{Therefore\: the\: parabola\: vertex\: is}
\mleft(6,\: 1\mright)
\mathrm{If}\: a<0,\: \mathrm{then\: the\: vertex\: is\: a\: maximum\: value}
\mathrm{If}\: a>0,\: \mathrm{then\: the\: vertex\: is\: a\: minimum\: value}
a=1
\mathrm{Minimum}\mleft(6,\: 1\mright)
\mathrm{For\: a\: parabola\: in\: standard\: form}\: y=ax^2+bx+c\: \mathrm{the\: axis\: of\: symmetry\: is\: the\: vertical\: line\: that\: goes\: through\: the\: vertex}\: x=(-b)/(2a)

Expanding (x-6)^2 + 1 by applying the Perfect Square Formula:


y=x^2-12x+37
\mathrm{Axis\: of\: Symmetry\: for}\: y=ax^2+bx+c\: \mathrm{is}\: x=(-b)/(2a)
a=1,\: b=-12
x=(-\left(-12\right))/(2\cdot\:1)
\mathrm{Refine}

Axis of simmetry : x=6

The quadratic function has the same shape than the parent function y=x^2 because there is NOT a coefficient within x.

User Wonderman
by
4.3k points