Given 7 women and 10 men;
a) the top 3 are all men:
![\begin{gathered} ways\text{ to choose 3 men out of 10 men is:} \\ 10C_3=(10!)/((10-3)!3!) \\ \Rightarrow(10!)/(7!3!)=(10*9*8*7!)/(7!*3*2*1) \\ \Rightarrow(10*9*8)/(3*2*1)=120 \\ \text{ways to choose 3 men from 17 people(10men +7women) is:} \\ 17C_3=(17!)/((17-3)!3!) \\ \Rightarrow(17!)/(14!*3!)=(17*16*15*14!)/(14!*3*2*1) \\ \Rightarrow(17*16*15)/(3*2*1)=680 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/celmzf4rhdx1syogi8h9x92u1k0krwjmg5.png)
Therefore, the probability that the top 3 are all men is:
![P_{all\text{ men}}=(120)/(680)=0.1765](https://img.qammunity.org/2023/formulas/mathematics/college/rhfqyd792gi1gwsk773qrsdfl25paf4zp5.png)
b) the top 3 are all women:
![\begin{gathered} \text{ways to choose 3 women from 7 women is:} \\ 7C_3=35 \\ \text{ways to choose 3 women from 17 people is:} \\ 17C_3=680 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zek8b034vj0yg1gx0nt1a03ipbratrnqa8.png)
Therefore, the probability that the top 3 are all women is:
![P_{\text{all women}}=(35)/(680)=0.0515](https://img.qammunity.org/2023/formulas/mathematics/college/6qqdu1m7d7gxjsbtfgma8s71uucyd8teer.png)
c) 2 men and 1 woman;
![\begin{gathered} ways\text{ to choose 2 men out of 10 men is:} \\ 10C_2=45 \\ \text{ways to choose 1 woman from 7 women is:} \\ 7C_1=7 \\ \text{Thus, ways to choose 2 men and 1 woman }=45*7=315 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ulabwfwusdalxd2bvznvn4bmkr9vxo5htb.png)
Therefore, the probability that the top 3 finishers are 2 men and 1 woman is:
![P=(315)/(680)=0.4632](https://img.qammunity.org/2023/formulas/mathematics/college/7a8tq7n5ztm3e68y3qksnwg11ru8fbayi9.png)
d) 1 man and 2 women;
![\begin{gathered} \text{ways to choose 1 man from 10 men is;} \\ 10C_1=10 \\ \text{ways to choose 2 women from 7 women is:} \\ 7C_2=21 \\ \text{Thus, ways to choose 1 man and 2 women is 10}*21=210 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsf6dpgfuyiuf52hr05w6d3fqjp4n05iyp.png)
Therefore, the probability that the top 3 finishers are 1 man and 2 women is:
![P=(210)/(680)=0.3088](https://img.qammunity.org/2023/formulas/mathematics/college/fjea32ynnnyh0bjnpjy48ynrmxw6xlfzv2.png)