48.6k views
1 vote
A set of 12 data points is given above. Which of thefollowing is true of these data?

A set of 12 data points is given above. Which of thefollowing is true of these data-example-1

1 Answer

1 vote

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given data


\lbrace14.9,21.1,21.2,8.4,14.5,5.9,7.6,10.0,4.8,3.2,28.7,29.5\rbrace

STEP 2: Find the mean ofthe data


\begin{gathered} The\:arithemtic\:mean\:\left(average\right)\:is\:the\:sum\:of\:the\:values\:in\:the\:set\:divided\:by\:the\:number\:of\:elements\:in\:that\:set. \\ \mathrm{If\:our\:data\:set\:contains\:the\:values\:}a_1,\:\ldots \:,\:a_n\mathrm{\:\left(n\:elements\right)\:then\:the\:average}=(1)/(n)\sum _(i=1)^na_i\: \\ Sum=169.8 \\ n=12 \\ mean=(169.8)/(12) \\ mean=14.15 \end{gathered}

STEP 3: Find the median


\begin{gathered} \mathrm{The\:median\:is\:the\:value\:separating\:the\:higher\:half\:of\:the\:data\:set,\:from\:the\:lower\:half.} \\ \:the\:number\:of\:terms\:is\:odd,\:then\:the\:median\:is\:the\:middle\:element\:of\:the\:sorted\:set \\ If\:the\:number\:of\:terms\:\:is\:even,\:then\:the\:median\:is\:the\:arithmetic\:mean\:of\:the\:two\:middle\:elements\:of\:the\:sorted\:set \\ \\ \mathrm{Arrange\:the\:terms\:in\:ascending\:order} \\ 3.2,\:4.8,\:5.9,\:7.6,\:8.4,\:10,\:14.5,\:14.9,\:21.1,\:21.2,\:28.7,\:29.5 \\ median=12.25 \end{gathered}

Hence, it can be seen here that the mean is larger than median.

STEP 4: Find the Interquartile range


\begin{gathered} The\:interquartile\:range\:is\:the\:difference\:of\:the\:first\:and\:third\:quartiles \\ First\text{ Quartile}=6.75 \\ Third\text{ quartile}=21.15 \\ IQR=14.4 \end{gathered}

STEP 5: Find the standard deviation


\begin{gathered} \mathrm{The\:standard\:deviation,\:}\sigma \left(X\right)\mathrm{,\:is\:the\:square\:root\:of\:the\:variance:\quad }\sigma \left(X\right)=\sqrt{\frac{\sum _(i=1)^n\left(x_i-\bar{x}\right)^2}{n-1}} \\ Standard\text{ deviation}=9.11836 \end{gathered}

Hence, it can be seen from above that the interquartile range is larger than the standard deviation.

STEP 6: Find the range


\begin{gathered} \mathrm{The\:range\:of\:the\:data\:is\:the\:difference\:between\:the\:maximum\:and\:the\:minimum\:of\:the\:data\:set} \\ Minimum=3.2 \\ Maximum=29.5 \\ Range=26.3 \end{gathered}

STEP 7: Fnd the variance


\begin{gathered} \mathrm{The\:sample\:variance\:measures\:how\:much\:the\:data\:is\:spread\:out\:in\:the\:sample.} \\ \mathrm{For\:a\:data\:set\:}x_1,\:\ldots \:,\:x_n\mathrm{\:\left(n\:elements\right)\:with\:an\:average}\:\bar{x}\mathrm{,\:}Var\left(X\right)=\sum _(i=1)^n\frac{\left(x_i-\bar{x}\right)^2}{n-1} \\ Variance=83.14454 \end{gathered}

Hence, it can be seen that the range is not larger than the variance.

Therefore, the answer is I and II only.

User Mendrugory
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories