From the problem, two angles in a quadrilateral are 110 and 120 degrees.
Note that the sum of interior angles in a quadrilateral is 360 degrees.
Then the sum of the other two angles will be :
![360-(110+120)=130](https://img.qammunity.org/2023/formulas/mathematics/college/rgwlui3w73ernrqkoaj0ohwu32qpnjmqt8.png)
And the angles are in a ratio of 6 : 7.
Multiply the ratio by a common factor "x"
![6x\colon7x](https://img.qammunity.org/2023/formulas/mathematics/college/1mh3ybwjag64p26ub10frxezkmclk3m84r.png)
Then take the sum and equate it to 130 degrees.
![6x+7x=130](https://img.qammunity.org/2023/formulas/mathematics/college/5uzso7p6j1cj6kmngu1zk78kfw7xxiafzz.png)
Solve for x :
![\begin{gathered} 13x=130 \\ x=(130)/(13) \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ruo8jj5b4qmoc14wbnpowaiwmxhym9w6js.png)
Now, substitute x = 10 to the ratio.
![\begin{gathered} 6(10)\colon7(10) \\ 60\colon70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3xyboikj68zl9wgeua6f3a1v62wfi2v9g.png)
Therefore, the other two angles are 60 and 70 degrees.
ANSWER :
60 and 70 degrees