Given:
![(v^2+10v+11)(v^2+3v-4)](https://img.qammunity.org/2023/formulas/mathematics/college/ooj0xwsgcqsw8xxlb124qqxtgz29y611sk.png)
To find- the simplification.
Explanation-
We know that the distribution property of multiplication over addition says
![a(b+c)=ab+ac](https://img.qammunity.org/2023/formulas/mathematics/high-school/wn2mw41sda3tx8go9g420mcpvur3vfrahh.png)
Use this property to simplify, and we get
![\begin{gathered} =(v^2+10v+11)(v^2+3v-4) \\ =v^2(v^2+3v-4)+10v(v^2+3v-4)+11(v^2+3v-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gx11ldm7241d1a86fnknszt2iz367wtnkz.png)
Multiply by opening the bracket, and we get
![=(v^4+3v^3-4v^2)+(10v^3+30v^2-40v)+(11v^2+33v-44)](https://img.qammunity.org/2023/formulas/mathematics/college/jrhfjoxi58786vf7w9d19l1frf6iwgk2bw.png)
Now, open the bracket and combine the like terms.
![\begin{gathered} =v^4+3v^3-4v^2+10v^3+30v^2-40v+11v^2+33v-44 \\ =v^4+(3v^3+10v^3)+(11v^2-4v^2+30v^2)-40v+33v-44 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3uhkjsnqp8qsplmg6omp9sq2snpcgteuyc.png)
On further solving, we get
![=v^4+13v^3+37v^2-7v-44](https://img.qammunity.org/2023/formulas/mathematics/college/2swbxiopqoea6cnosb6tduykysyx2s63rs.png)
Thus, from the distributive property of multiplication over addition, we get v⁴+13v³+37v²-7v-44.
The answer is v⁴ + 13v³ + 37v² - 7v - 44.