Answer:
A. The solution set is {4096}.
Explanation:
Given the logarithmic equation:
![(1)/(2) \log _(6) x=3 \log _(6) 4](https://img.qammunity.org/2023/formulas/mathematics/college/lyfnzmao8esqpq18l6iy1twtoeq7wfyqcw.png)
Multiply both sides of the equation by 2:
![\begin{gathered} (1)/(2)*2\log_6x=3*2\log_64 \\ \log_6x=6\log_64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ydh8exd8ottap3trjnel34xuan9ulrs030.png)
Next, apply the power law of logarithms to the right side of the equation.
![\begin{gathered} \log_6x=\log_64^6 \\ \implies\operatorname{\log}_6x=\operatorname{\log}_64096 \end{gathered}]()
Since the bases are the same, equate the numbers:
![x=4096](https://img.qammunity.org/2023/formulas/mathematics/college/gqwdzyxpch1olxep4rnt58grdkdj1ul9p0.png)
The solution set is {4096}.