226k views
2 votes
TRIGONOMETRY Given a unite circle what is the value for y?

TRIGONOMETRY Given a unite circle what is the value for y?-example-1

1 Answer

5 votes

Let's put more details in the given figure:

To find y, we will be using the Pythagorean Theorem.


\begin{gathered} c^2=a^2+b^2 \\ \text{r}^2=x^2+y^2 \\ \end{gathered}

Where,

r = radius

x = 1/3

y = uknown

We get,


\text{r}^2=x^2+y^2
\begin{gathered} y^2\text{ = r}^2\text{ - }x^2 \\ y^{}\text{ = }\sqrt{\text{r}^2\text{ - }x^2} \end{gathered}
\text{ y = }\sqrt[]{1^2-((1)/(2))^2}\text{ = }\sqrt[]{1\text{ - }(1)/(4)}
\text{ y = }\sqrt[]{(3)/(4)}\text{ = }\frac{\sqrt[]{3}}{\sqrt[]{4}}
\text{ y = }\frac{\sqrt[]{3}}{2}

Therefore, the answer is:


\text{ y = }\frac{\sqrt[]{3}}{2}

TRIGONOMETRY Given a unite circle what is the value for y?-example-1
User Tudor Carean
by
5.1k points