SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given parameters
![\begin{gathered} Initial\text{ squirrels}=105 \\ Num\text{ber of squirrels after one year}=98 \\ change\text{ in number of squirrels in a year}=105-98=7 \\ chan\text{ge in diseased oak trees}=y-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7hu6m28yxa5nli7tvuvm50simclx5ojhev.png)
STEP 2: Calculate the rate of decay (k)
![\begin{gathered} rate\text{ of decay\lparen k\rparen}=\frac{Final\text{ population-Initial population}}{initial\text{ population}} \\ \text{By substitution,} \\ k=(98-105)/(105)=(-7)/(105)=-0.06666666\approx-0.0667 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nb31lgho5t0cprk1hisan4wm6w8wzy9kvr.png)
STEP 3: Calculate the number of squirrels after 15 years
![\begin{gathered} A=a_0e^(kt) \\ a_0=105 \\ k=-0.0667 \\ t=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9xskkxoo0kbgpo83as0dmjzt7fx6q3jfjh.png)
By substitution,
![A=105\cdot e^(-0.0667*15)](https://img.qammunity.org/2023/formulas/mathematics/college/fotl0r8e5uva6bvfksrdc4c4qslbc2kpep.png)
By simplification,
![\begin{gathered} \mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b) \\ =105* (1)/(e^(15* \:0.0667)) \\ \mathrm{Multiply\:fractions}:\quad \:a* (b)/(c)=(a\:* \:b)/(c) \\ =(1* \:105)/(e^(1.0005)) \\ \mathrm{Multiply\:the\:numbers:}\:1* \:105=105 \\ =(105)/(e^(1.0005)) \\ e^(1.0005)=2.71964 \\ =(105)/(2.71964) \\ \mathrm{Divide\:the\:numbers:}\:(105)/(2.71964)=38.60803 \\ =38.60803 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/27dzku32ft39a3xfidimyjfu0sl0juycb9.png)
By approximation, this leaves us with 34 squirrels