a) Recall, the net torque on the rod must be zero. Thus,
Σt = 0
where
t represents torque
Thus,
t1 + t2 - tr - t3 = 0
t = rF
where
F = force
r = distance
r1F1 + r2F2 - rrFr - r3F3 = 0
r3F3 = r1F1 + r2F2 - rrFr
r3 = (r1F1 + r2F2 - rrFr)/F3
Note,
F1 = T1 = m1g
F2 = T2 = m2g
F3 = T3 = m3g
Thus,
r3 = (r1m1g + r2m2g - rrmrg)/m3g
g cancels out
r3 = (r1m1 + r2m2 - rrmr)/m3
From the information given,
r1 = 10 cm = 10/100 = 0.1 m
r2 = 90 cm = 90/100 = 0.9 m
rr = 100/2 = 50 cm = 50/100 = 0.5 m
m1 = 281 g = 281/1000 = 0.281 kg
m2 = 177g = 0.177 kg
mr = 158g = 0.158 kg
m3 = 200g = 0.2kg
By substituting these values into the equation,
r3 = (0.1 x 0.281 + 0.9 x 0.177 - 0.5 x 0.158)/0.2
r3 = 0.542 m
The force exerted by the pin, Fp = mg
g = 9.8
Fp = (m3 - mr - m1 - m2)g
Fp = (0.2 + 0.158 - 0.281 - 0.177)9.8
Fp = - 0.981
Taking the absolute value,
IFpI = 0.981 N
F = - 90 degrees
b) r1F1 + r2F2 - rrFr - r4F4 = 0
r4F4 = r1F1 + r2F2 - rrFr = 0
F4 = (r1F1 + r2F2 - rrFr)/r4
Note,
F1 = T1 = m1g
F2 = T2 = m2g
F3 = T3 = m3g
F4 = T4 = m4g
Thus,
m4g = (r1m1g + r2m2g - rrmrg)/r4
m4g = (r1m1 + r2m2 - rrmr)/r4
r4 = 0.2
By substituting these values into the equation,
m4 = (0.1 x 0.281 + 0.9 x 0.177 - 0.5 x 0.158)/0.2
m4 = 0.542 kg
The force exerted by pin is
Fp = (m4 + mr - m1 - m2(g
Fp = (0.542 + 0.158 - 0.281 - 0.177)9.8
Fp = 2.37 N
Fp = 2.37 N
F = 90 degrees
c) When the pin does not exert a force,
Fp = 0
F1 + F2 - Fr = F5
m1 + m2 - mr = m5
m5 = 0.281 + 0.177 - 0.158
m5 = 0.3 kg
Since the net torque on the rod is zero,
t1 + t2 - tr - t5
t5 = t1 + t2 - tr - t5
t5 = t1 + t2 - tr - t5
r5 = r1F1 + r2F2 - ffFr)/F5
r5 = (r1m1 + r2m2 - rrmr)/m5
r5 = (0.1 x 0.281 + 0.9 x 0.177 - 0.5 x 0.158)/0.3
r5 = 0.36