Step-by-step explanation:
We were given the function:
![g(x)=-1+4^(x-1)](https://img.qammunity.org/2023/formulas/mathematics/college/vy2lcnvgton9d692rsqsoaub36mfrz580r.png)
We are to determine its domain, range and horizontal asymptote. This is shown below:
Domain:
![\begin{gathered} g(x)=-1+4^(x-1) \\ 4^(x-1) \\ when:x=-10 \\ 4^(-10-1)=4^(-11) \\ when:x=1 \\ 4^^(1-1)=4^0=1 \\ when:x=20 \\ 4^(20-1)=4^(19) \\ \text{This shows us that the function is valid for every real number. This is written as:} \\ \left\x \end{gathered}]()
Range:
![\begin{gathered} g(x)=-1+4^(x-1) \\ \begin{equation*} -1+4^(x-1) \end{equation*} \\ when:x=-10 \\ =-1+4^(-10-1)\Rightarrow-1+4^(-11) \\ =-0.9999\approx-1 \\ when:x=1 \\ =-1+4^(1-1)\Rightarrow-1+4^0\Rightarrow-1+1 \\ =0 \\ when:x=5 \\ =-1+4^(5-1)\Rightarrow-1+4^4\Rightarrow-1+256 \\ =255 \\ \text{This shows us that the lowest value of ''y'' is -1. This is written as:} \\ \left\y>−1\right\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e3lmm8o5wa102qjat4upge6yxim8kemjta.png)
Horizontal asmyptote:
For exponential functions, the equation of the horizontal asymptote is given as:
![y=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/vwgcxbnu6slshz866yc5mzof7h9jqvl6lx.png)