SOLUTION:
Step 1:
In this question, we are given the following:
Explain the behavior of :
![f(x)\text{ = ln\lparen x-a\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/yfgi89atw7vyqwddm3zcscd7zklt2mk1ar.png)
when x=a.
Give values to x and a such that:
![(x-a)\text{ = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/ugpozist4bg8gcj6qwnpl5ic10xbqj69dj.png)
Step 2:
The graph of the function:
![f(x)\text{ = In \lparen x- a \rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/35eh1vs071ybxxuy47n6fnql96u2cftbu9.png)
are as follows:
Step-by-step explanation:
From the graph, we can see that the function:
![f(x)\text{ = ln\lparen x-a\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/yfgi89atw7vyqwddm3zcscd7zklt2mk1ar.png)
is a horizontal translation, shift to the right of its parent function,
![f(x)\text{ = In x}](https://img.qammunity.org/2023/formulas/mathematics/college/6r2shd40cjrgi747eze9god16p3aufv88r.png)