Answer:
![(x-12)^2+(y+13)^2=36](https://img.qammunity.org/2023/formulas/mathematics/college/pljzay1nr80illwenfehbwmu6l90knq1f3.png)
Step-by-step explanation:
Given:
• Center: (12,-13)
,
• Point on circle: (18, -13)
First, we find the length of the radius.
![\begin{gathered} r=\sqrt[]{(18-12)^2+(-13-(-13)_{})^2} \\ =\sqrt[]{(6)^2} \\ r=6\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i6fvgrdk6ub9p0kwlc75rovunwvec7iizj.png)
The general equation of a circle is given as:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/5s77z5lwu6jnvb5vkwanu2jvhq5sh1qkc3.png)
Substituting the centre, (h,k)=(12,-13) and r=6, we have:
![\begin{gathered} (x-12)^2+(y-(-13))^2=6^2 \\ (x-12)^2+(y+13)^2=36 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xzznovkkumsc6ju1ba8jukuyxjrm635xa5.png)
The equation of the circle is:
![(x-12)^2+(y+13)^2=36](https://img.qammunity.org/2023/formulas/mathematics/college/pljzay1nr80illwenfehbwmu6l90knq1f3.png)