206k views
3 votes
If log a=4 log b= -16 and log c=19 find value of log a^2c (——-) /—— / B

User Webbexpert
by
8.5k points

1 Answer

4 votes

We have the following


\begin{gathered} \log a=4 \\ \log b=-16 \\ \log c=19 \\ \log (\frac{a^2\cdot c}{\sqrt[]{b}}) \end{gathered}

Let's find a, b and c in order to solve the problem

a.


\begin{gathered} \log a=4 \\ a=10^4=10000 \end{gathered}

a = 10,000

b.


\begin{gathered} \log b=-16 \\ b=10^(-16)=(1)/(10^(16)) \end{gathered}

b=1.0E-16

c.


\begin{gathered} \log c=19 \\ c=10^(19) \end{gathered}

c=1.0E19

Thus, the value of log [ a^2c/sqrt(c) ] is :

replace:


\log (\frac{a^2\cdot c}{\sqrt[]{b}})=\log _(10)\mleft(\frac{\left(10^4\right)^2\cdot\:10^(19)}{\sqrt{10^(-16)}}\mright)

simplify:


\begin{gathered} \frac{\left(10^4\right)^2\cdot\:10^(19)}{\sqrt{10^(-16)}}=(10^8\cdot10^(19))/(10^(-8))=10^8\cdot10^8\cdot10^(19)=10^(8+8+19)=10^(35) \\ \Rightarrow\log 10^(35)=35 \end{gathered}

Therefore, the answer is 35

User TrewTzu
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories