hello
to solve this question, we need to write an equation expressing the word problem and solve for the price of each item.
let x represent the cost of avocados
let y represent the cost of tomatoes
![\begin{gathered} 5x+3y=13.30\ldots\text{.equation 1} \\ 3x+8y=22.55\ldots\text{.equation 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/owwzji5kt2u3zqwfl77hytdqb8xfj9n2wb.png)
from equation 1, let's make xthe subject of formula
![\begin{gathered} 5x+3y=13.30 \\ 5x=13.30-3y \\ \text{divide both sides by 5 to solve for x} \\ x=(13.30-3y)/(5) \\ \text{this is equation 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ug5g6m752n03qoegglf8n1bqax4223ven.png)
put equation 3 into equation 2
![\begin{gathered} 3x+8y=22.55 \\ 3((13.30-3y)/(5))+8y=22.55 \\ (39.9-9y)/(5)+8y=22.55 \\ \text{solve for y} \\ (39.9-9y+40y)/(5)=22.55 \\ (39.9+31y)/(5)=22.55 \\ 39.9+31y=22.55*5 \\ 39.9+31y=112.75 \\ 31y=112.75-39.9 \\ 31y=72.85 \\ y=(72.85)/(31) \\ y=2.35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w06gq7jrawtg72cxrdyez149zfjo3sl60d.png)
since y = 2.35, let's put that in either equation 1 or 2
from equation 2
3x + 8y = 22.55
put y = 2.35 and solve for x
![\begin{gathered} 3x+8y=22.55 \\ y=2.35 \\ 3x+8(2.35)=22.55 \\ 3x+18.8=22.55 \\ 3x=22.55-18.8 \\ 3x=3.75 \\ x=(3.75)/(3) \\ x=1.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4vlaxjnmrldwr0kv5ctprlj5dh14vagt8.png)
from the calculations above, the price per avocado and pound of tomatoes are $1.25 and $2.35 respectively