The Solution:
The correct answer is 67 degrees.
Given the rhombus below:
We are required to find the measure of angle PRZ.
Considering trianglePRZ, we can apply the law of cosine to the angle of interest, which is, angle PRZ.
![R=\cos ^(-1)((p^2+z^2-r^2)/(2pz))](https://img.qammunity.org/2023/formulas/mathematics/college/iryx5tpdalycpiix2b8usm75uamqak2u0g.png)
In this case,
![\begin{gathered} p=(5+5)=10 \\ z=13 \\ r=13 \\ R=\text{?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qi0n85p1bt3jrrr8t1g1rfoh8ls1fxs3ch.png)
Substituting these values in the formula, we get
![R=\cos ^(-1)((10^2+13^2-13^2)/(2(10)(13)))](https://img.qammunity.org/2023/formulas/mathematics/college/c5e17p75o8359t6ayfqycuhuhoftm4o673.png)
![R=\cos ^(-1)(\frac{100^{}+169^{}-169^{}}{2(10)(13)})=\cos ^(-1)(\frac{100^{}}{260})=67.380\approx67^o](https://img.qammunity.org/2023/formulas/mathematics/college/uqrpzka2hgw56cuio9ilrukmsgjd9zkej1.png)
![m\angle\text{PRZ}\approx67^o](https://img.qammunity.org/2023/formulas/mathematics/college/7vd3461ldbd1ozglnqhoui04l38na4sh3u.png)
Therefore, the correct answer is 67 degrees.