For part A. One way to know if there is a correlation between the data is to graph the data set, like this
Then, as can you see the data presents a positive linear correlation.
For part B. You can take the coordinates of two points and find the slope of the line using the formula

If you take

Now, using the slope formula, you can find the equation of the line in its slope-intercept form

Therefore, the function that best fits the data is

For part C. The slope of the plot is 10 and indicates that for every hour students spend time studying, they get 10 more points on the science test.
The y-intercept of the plot is 57 and indicates that if students study 0 hours for the science test, they will obtain 57 points as a grade.