ANSWER:
a) 1.757 m/s
b) 119.91 N
Explanation:
Given:
Mass 1 (m1) = 210 kg
Initial speed 1 (u1) = 3.5 m/s
Mass 2 (m2) = 221 kg
Initial speed (u2) = 1.8 m/s
We make a sketch of the situation:
a)
We make a momentum balance by taking into account the conservation of momentum:

Now an energy balance taking into account the conservation of energy, as follows:

Now, we substitute equation (1) in (2) and we get the following:
![\begin{gathered} m_1\left(u_1\right)^2+m_2\left(u_2\right)^2=m_1\left(v_1\right)^2+m_2\left((m_1u_1-m_2u_2-m_1v_1)/(m_2)\right)^2 \\ \\ m_1\left(u_1\right)^2+m_2\left(u_2\right)^2=m_1\left(v_1\right)^2+m_2\left((\left(m_1u_1\right)^2-2\left(m_1u_1\right)\left(m_2u_2\right)-2\left(m_1u_1\right)\left(m_1v_1\right)+\left(m_2u_2\right)^2+2\left(m_2u_2\right)\left(m_1v_1\right)+\left(m_1v_1\right)^2)/((m_2)^2)\right) \\ \\ m_1\left(u_1\right)^2+m_2\left(u_2\right)^2=m_1\left(v_1\right)^2+\left((\left(m_1u_1\right)^2-2\left(m_1u_1\right)\left(m_2u_2\right)-2\left(m_1u_1\right)\left(m_1v_1\right)+\left(m_2u_2\right)^2+2\left(m_2u_2\right)\left(m_1v_1\right)+\left(m_1v_1\right)^2)/(m_2)\right) \\ \\ v_1=u_1(m_1-m_2)/(m_1+m_2)+u_2(2m_2)/(m_1+m_2) \\ \\ \text{ Now, we substitute each value, like so:} \\ \\ v_1=3.5\cdot(210-221)/(210+221)+1.8\cdot(2\cdot221)/(210+221) \\ \\ v_1=1.757\text{ m/s} \end{gathered}]()
b)
We use the following formula to determine the force:
