219k views
1 vote
Convert the following rectangular equation to polar form.Assume a>0 3x^2+3y^2-4x+2y=0

Convert the following rectangular equation to polar form.Assume a>0 3x^2+3y^2-4x-example-1

1 Answer

6 votes

The given equation is,


3x^2+3y^2-4x+2y=0

The polar form of the equation can be determined by using the substitution


\begin{gathered} x=r\cos \theta \\ y=r\sin \theta \end{gathered}

using the substitution,


\begin{gathered} 3(x^2+y^2)-4x+2y=0 \\ 3(r^2\cos ^2\theta+r^2\sin ^2\theta)-4r\cos \theta+2r\sin \theta=0 \\ 3r^2-4rcos\theta+2r\sin \theta=0 \\ r(3r-4\cos \theta+2\sin \theta)=0 \\ r=0\text{ and }(3r-4\cos \theta+2\sin \theta)=0 \\ (3r-4\cos \theta+2\sin \theta)=0 \end{gathered}

Thus, the above equation gives the required polar form of the circle.

User Aalmigthy
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.