Graph C has a function
![f(x)=2x^3-16x+11](https://img.qammunity.org/2023/formulas/mathematics/high-school/oht6mrrwekkv3wtdgq3ygopwmul96rkwxi.png)
Since the line L intersects the graph at the point, A (2, -5)
To find the slope of the line we will differentiate the f(x) and substitute x by 2
![\begin{gathered} f^(\prime)(x)=2(3)x^(3-1)-16x^(1-1)+0 \\ f^(\prime)(x)=6x^2-16 \\ m=6(2)^2-16 \\ m=24-16 \\ m=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cjeqmj3svvl5ksx8m3s4inkb2ujhvdhzjv.png)
The slope of the line is 8, substitute it in the form of the linear equation
![\begin{gathered} y=mx+b \\ y=8x+b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xn1t17ftbqpsd7ihrhgftke3cplt1ozfi8.png)
To find b substitute x by 2 and y by -5
![\begin{gathered} -5=8(2)+b \\ -5=16+b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6hxjbeofozxgm0ehln8av5ntpajyghfge3.png)
Subtract 16 from both sides to find b
![\begin{gathered} -5-16=16-16+b \\ -21=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cuawqtebyj4hv5uge0cr15k3fvyd5utvm9.png)
Then the equation of the line is
![\begin{gathered} y=8x+(-21) \\ y=8x-21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s14f0y8gb6bs5syfe8lu1p02nf30lywz42.png)