Since the resistances are in parallel, the voltage in each one is the same, so:
a. V1 = 60 V
b. V2 = 60 V
c. V3 = 60 V
d.
The total resistance of parallel resistances can be calculated with the formula below:
![\begin{gathered} (1)/(RT)=(1)/(R1)+(1)/(R2)+(1)/(R3)\\ \\ RT=(R1\cdot R2\cdot R3)/(R1R2+R2R3+R1R3)\\ \\ RT=\frac{11\cdot17\cdot12}{11\cdot17+17\operatorname{\cdot}12+11\operatorname{\cdot}12}\\ \\ RT=(2244)/(523)\\ \\ RT=4.29\text{ ohms} \end{gathered}]()
e.
The total current is given by the voltage divided by the total resistance:
![IT=(V)/(RT)=(60)/(4.29)=13.99\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/k5wagg58zux3k5fstumjnr1wc6frxuer4c.png)
The current in each resistor is given by the voltage divided by the resistance:
f.
![I1=(V1)/(R1)=(60)/(11)=5.45\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/39boykxc3tb5vvvamdnek9by8j3ds01aiv.png)
g.
![I2=(V2)/(R2)=(60)/(17)=3.53\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/hy7rec90o4ikrk7sgrd5gc1krkf2jrphrd.png)
h.
![I3=(V3)/(R3)=(60)/(12)=5\text{ A}](https://img.qammunity.org/2023/formulas/physics/college/cfwx0g5j8v2fbv86fdd22iixc63xrj21e5.png)