In order to corroborate that the points belong to the equation, we must subtitute the points into the equation.
If we substitute the points from option A, we get
![\begin{gathered} 7=7-0 \\ 7=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t6k9ujn4psxdmihavvesozqe4ngkuwudc9.png)
for (1,8), we have
![\begin{gathered} 8=7-1 \\ 8=6\text{ !!!} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3r39klidr41ntqdcfdlg6lg9m1h1g5r2e.png)
then, option A is false.
Now, if we substitute the points in option B, for point (2,5), we have
![\begin{gathered} 5=7-2 \\ 5=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hi2uc5oejq92re9a9bq9emdggas5ewny63.png)
which is correct. Now, for point (-1.8) we obtain
![\begin{gathered} 8=7-(-1) \\ 8=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fg4zzzst8mrvcfsm2vx54s8f2j2xtk5uhs.png)
Since all the points fulfil the equation, then option B is an answer.
Lets continue with option C and D.
If we substitute point (1,8) from option C, we have
![\begin{gathered} 8=7-1 \\ 8=6\text{ !!!} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3r39klidr41ntqdcfdlg6lg9m1h1g5r2e.png)
then, option C is false.
If we substite point (4,11) from option D, we get
![\begin{gathered} 11=7-4 \\ 11=2\text{ !!!} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoipib855x1agrfeetaaoi91wlxhw808i3.png)
then, option D is false.
Therefore, the answer is option B.