Here, we are given a 45°-45°-90° triangle.
Let's find the length of the legs.
A 45°-45°-90° triangle is an isosceles triangle, and the two legs of an isosceles triangle are of equal lengths.
To find the length of each leg apply the formula:
![c=a\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/2a8qgirxhrxvdywxq1kbl4idh1v2ctehnc.png)
Where;
c = 12
Thus, we have:
![12=a\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/2lw6mcc7otasquap6up2a1d07ttgl1j1w2.png)
Solve for a:
Divide both sides by √2
![\begin{gathered} \frac{12}{\sqrt[]{2}}=\frac{a\sqrt[]{2}}{\sqrt[]{2}} \\ \\ \frac{12}{\sqrt[]{2}}=a \\ \\ a=\frac{12}{\sqrt[]{2}} \\ \\ \text{Simplify the denominator:} \\ a=\frac{12}{\sqrt[]{2}}\ast\frac{\sqrt[]{2}}{\sqrt[]{2}} \\ \\ a=\frac{12\sqrt[]{2}}{2} \\ \\ a=6\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t3qg41xuh18s964thybjvb7tgtkswddetc.png)
Therefore, the length of each leg in radical form is 6√2
ANSWER:
![6\text{ }\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/pqlncs0vo8ftjjk6790kxqf6ivprqiy2ns.png)