To answer this question we need the equation of a parabola that uses the distance from the focus to the vertex.
This formula is,
![4p(y-k)=(x-h)^2](https://img.qammunity.org/2023/formulas/mathematics/college/n4m440verw47cc0s0yjkarjn6ecqlbm1mf.png)
where,
p is the distance from the focus to the vertex, and the point (h,k) is the vertex.
![\begin{gathered} \text{focus (2,0)} \\ \text{Threrefore} \\ p=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4nkkxazcq6wvxg2c3i9gztyy3jw4zoqoxu.png)
![\begin{gathered} \text{vertex (0 , 0)} \\ \text{Therefore,} \\ h=0 \\ k=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nndrc41hjjvi7v7rpvj6do2mgftnht587k.png)
Let us now substitute the data into the equation of the parabola,
![\begin{gathered} 4*2(y-0)=(x-0)^2 \\ 4*2(y)=x^2 \\ 8y=x^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jcrqekir8i19pyc43o3n4b6jisnql26ya5.png)
Hence, the equation for the parabola is, x² = 8y.
Option C is the correct answer.