c.
The line equation is of the form
![y=mx+c\ldots(1)](https://img.qammunity.org/2023/formulas/mathematics/college/tj2y4ejhvnwz5f44opomzwc8y0qlrx035g.png)
From the graph, we observe and find these points
(1,5) and (0,4) lie on the given line.
Substituting x=1, y=5 in equation (1), we get
![5=m(1)+c](https://img.qammunity.org/2023/formulas/mathematics/college/5fjlo0ugpojhn60of2z5fv3z6sxqd1d0m2.png)
![m+c=5\ldots\text{.}(2)](https://img.qammunity.org/2023/formulas/mathematics/college/nrklhwr07sfu95fk80tkgs0kdcer4xznsx.png)
Substituting x=0, y=4 in equation (1), we get
![4=m(0)+c](https://img.qammunity.org/2023/formulas/mathematics/college/a62i3vri5619gl9f993a1cutf9zctj8vpr.png)
![c=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/o580ohzvawa5fa8wxa4g2lprdr1v9uyhmb.png)
Substituting c=4 in equation (2), we get
![m+4=5](https://img.qammunity.org/2023/formulas/mathematics/college/1g89o8db8ckg9aoigq3vmk5dk0t9d58ji8.png)
![m=5-4](https://img.qammunity.org/2023/formulas/mathematics/college/svmzqqwotgddx3zjjupktw3ld3i8zhulya.png)
![m=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/hnmxeo06z7telsynq10n0tb8aseh5zkiei.png)
Substituting c=4,m=1 in equation (1), we get
![y=x+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/mfhanz7zzeznenxe111cpamzjpre1ovral.png)
We need to write this equation in the form of r(x) = p(x) / q(x).
![r(x)=(p(x))/(q(x))\ldots(3)](https://img.qammunity.org/2023/formulas/mathematics/college/nn2ldui9gfduw1etwvxu6y2tcl47nxjpp7.png)
Let r(x)=x+5, q(x)=x, and subsitute in the equation , we get
![x+5=(p(x))/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/78v88ig9mzwpicshg8yk97cv66dy2qxyyt.png)
Using the cross-product method, we get
![x(x+5)=p(x)](https://img.qammunity.org/2023/formulas/mathematics/college/zl73x24ypztpmoucdu8j9uez6fprutefya.png)
![x* x+x*5=p(x)](https://img.qammunity.org/2023/formulas/mathematics/college/m630l6cju2oa1yrt9lqn4ixox71zmxqnfk.png)
![x^2+5x=p(x)](https://img.qammunity.org/2023/formulas/mathematics/college/o7da9rceagqhaqcp792t2ncb45pv606k4x.png)
Substitute values in equation (3), we get
![x+5=(x^2+5x)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/6d5oaxxtt8xy7mhge04yrjt9lmvr41ak6m.png)
Hence the required equation is
![x+5=(x^2+5x)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/6d5oaxxtt8xy7mhge04yrjt9lmvr41ak6m.png)