Solving the equation for r:
![\begin{gathered} V=400(9.025\cdot10^(-5)-r^2) \\ r^2=9.025\cdot10^(-5)-(V)/(400) \\ r=\sqrt[]{9.025\cdot10^(-5)-(V)/(400)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v9vhejdma2j75fsm4lxgtmlc37bjr78qwx.png)
With the first equations, we can establish some limits for V:
With the lowest value for r (r=0):
![\begin{gathered} V=400(9.025\cdot10^(-5)-0^2) \\ V=400(9.025\cdot10^(-5)) \\ V=3.61\cdot10^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kqn60dne0ky09kprmj10k4lqyxp2ftwmp6.png)
With the highest value for r (r=9.5x10^-3)
![\begin{gathered} V=400(9.025\cdot10^(-5)-(9.5\cdot10^(-3))^2) \\ V=400(9.025\cdot10^(-5)-9.025\cdot10^(-5)) \\ V=400(0) \\ V=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nsvx8rt0zmyfa66rkdquyqxw3ymdje43an.png)
According to the radius range, velocity can be between 0 and 3.61x10^-2
It is also necessary to check the domain of the function considering it is a square root. The argument of an square root cannot be less than 0. Then:
![\begin{gathered} 9.025\cdot10^(-5)-(V)/(400)\ge0 \\ 9.025\cdot10^(-5)\ge(V)/(400) \\ V\leq400(9.025\cdot10^(-5)) \\ V\leq3.61\cdot10^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n8uy3k67s0nv0vei0awspzmo82cux21725.png)
This is the same limit for velocity obtained before. Then, we can say for velocity that:
![0\leq V\leq3.61\cdot10^(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/ovpmlc5qifyw4gc5kglfap13pxm41yfrcc.png)