To solve the inequality we need to find the x-values that are the roots of the quadratic equation, let's use the quadratic formula:
![\begin{gathered} \text{For an equation in the form:} \\ ax^2+bx+c=0 \\ The\text{ quadratic formula is:} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{Then a=-2, b=4 and c=4} \\ x=\frac{-4\pm\sqrt[]{4^2-4(-2)(4)}}{2(-2)} \\ x=\frac{-4\pm\sqrt[]{16+32}}{-4} \\ x=\frac{-4\pm\sqrt[]{48}}{-4} \\ x=(-4\pm6.93)/(-4) \\ \text{Then} \\ x1=(-4+6.93)/(-4)=(2.93)/(-4)=-0.732 \\ x2=(-4-6.93)/(-4)=(-10.93)/(-4)=2.732 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dhrtk5qlctod7tnsud7vdc1qg4u2mteldh.png)
Now, let's try values less or greater than these roots:
If x=-1:

Now let's try x=3:

Then, the graph of the inequality is:
The red-shaded area are the solution to the inequality, then in interval notation we have:

In builder notation it would be:
