The vertex form of a quadratic function is:
![f(x)=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/lv6wh92oxxg1yzd73cyhfmkxhau9bpvca1.png)
Where (h, k) is the vertex. Looking at the graph, the vertex is at (-1, 2), then:
![\begin{gathered} h=-1 \\ k=2 \\ \Rightarrow f(x)=a(x+1)^2+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tk5kt2lh40vsejr0nzbjt97myk8e6rsb3g.png)
Finally, to find "a" we use the fact that 1 is the y-intercept of the graph (where the function is evaluated at x = 0). Then:
![\begin{gathered} f(0)=1\Rightarrow a(0+1)^2+2=1 \\ a=1-2 \\ \Rightarrow a=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b4okrm0e9xc2vxsfouwizq5nu3zm5a68ha.png)
The final form of the function is:
![f(x)=-(x+1)^2+2](https://img.qammunity.org/2023/formulas/mathematics/college/welw0ducimmj6m7hc07abrnd9t76p77a6w.png)