Given the equation:
![y=-0.26x^2-0.55x+91.81](https://img.qammunity.org/2023/formulas/mathematics/college/wmo9we0e6xgyvnuuavm9ti9zorec3nhz77.png)
Where x represents the number of years after 2000.
Let's solve for the following:
a.) Calculate the number of deaths per 100,000 for 2015 and 2017.
• For 2015, we have:
Number of years between 2015 and 2000 = 2015 - 2000 = 15
Substitute 15 for x and solve for y:
![\begin{gathered} y=-0.26(15)^2-0.55(15)+91.81 \\ \\ y=-0.26(225)-8.25+91.81 \\ \\ y=-58.5-8.25+91.81 \\ \\ y=25.06\approx25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9c4si2zln280ldgpiutu53i3uulgoa1krq.png)
The number of deaths per 100,000 for 2015 is 25.
• For 2017:
Number of years between 2017 and 2000 = 2017 - 2000 = 17 years
Subustitute 17 for x and solve for y:
![\begin{gathered} y=-0.25(17)^2-0.55(17)+91.81 \\ \\ y=7.32\approx7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i902t7l1i77otnn40huroazlfa7kbpqky2.png)
The number of deaths oer 100,000 for 2017 is 7.
• b.) Let's solve for x when y = 50 using the quadratic formula.
Apply the quadratic formula:
![x=\frac{-b\pm\sqrt[]{(b^2-4ac)}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/89dxfz6i2fe65uf7yctx074d5qq4azpve2.png)
Now, subsitute 50 for y and equate to zero:
![50=-0.26x^2-0.55x+91.81](https://img.qammunity.org/2023/formulas/mathematics/college/o5eee6hcw7mx3wfvqh7h6qgxln8xem5hw1.png)
Subtract 50 from both sides:
![\begin{gathered} 50-50=-0.26x^2-0.55x+91.81-50 \\ \\ 0=-0.26x^2-0.55+41.81 \\ \\ -0.26x^2-0.55+41.81=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s8ipkdr7eybzgyhkbu26ycvwq80g2aex1l.png)
Apply the general quadractic equation to get the values of a, b and c:
![\begin{gathered} ax^2+bx+c=0 \\ \\ -0.26x^2-0.55+41.81=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pn0j37ahtyouaocz877ccsqnvr6ss7h064.png)
Hence, we have:
a = -0.26
b = -0.55
c = 41.81
Thus, we have:
![\begin{gathered} x=\frac{-(-0.55)\pm\sqrt[]{-0.55^2-4(-0.26\ast41.81)}}{2(-0.26)} \\ \\ x=\frac{0.55\pm\sqrt[]{0.3025+43.4824}}{-0.52} \\ \\ x=(0.55\pm6.617)/(-0.52) \\ \\ x=-13.78,\text{ 11.}67 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b3ooqzokyhlf1z34mhewpta0tzu4q0x2b0.png)
Since the number of years cannot be a negative value, let's take the positive value 11.67
Therefore, the value of x is 11.67 when y = 50.